
1

Analysis of the FLUTE Data Carousel
Jani Peltotalo, Sami Peltotalo and Jarmo Harju

Tampere University of Technology
Institute of Communications Engineering

P.O.Box 553, FIN-33101 Tampere, Finland
Email: {jani.peltotalo, sami.peltotalo, jarmo.harju}@tut.fi

Abstract— This paper presents the results of performance tests
done for File Delivery over Unidirectional Transport (FLUTE)
protocol. FLUTE is a protocol used to deliver files over the
Internet or unidirectional systems from one or more senders to
one or more receivers. Because FLUTE uses unreliable transport
protocol, packet losses must be handled at higher layers. This
paper shows how FLUTE manages to recover from packet losses
using data carousel.

I. I NTRODUCTION TOFLUTE

File Delivery over Unidirectional Transport (FLUTE) [1]
is a protocol used to deliver files (e.g. documents, images,
video/audio clips) over the Internet or unidirectional systems
from one or more senders to one or more receivers. FLUTE
can be used with both multicast and unicast User Datagram
Protocol (UDP) delivery, but it is particularly suited to multi-
cast networks. Both multicast models, Any-Source Multicast
(ASM) and Source-Specific Multicast (SSM), can be used with
FLUTE. FLUTE supports also both IP versions (IPv4 and
IPv6), because there are no IP version specific parts in the
FLUTE header.

FLUTE builds on Asynchronous Layered Coding (ALC)
Protocol Instantiation [2] of the Layered Coding Transport
(LCT) Building Block [3]. LCT provides transport level sup-
port for reliable content delivery and stream delivery proto-
cols. ALC combines the LCT building block, a Congestion
Control (CC) building block and a Forward Error Correction
(FEC) building block to provide congestion controlled reliable
asynchronous delivery.

A FLUTE session (i.e. an ALC/LCT session) consists of
one or more ALC/LCT channels defined by the combination
of a sender and an address associated with the channel by the
sender. A receiver joins a channel to start receiving the data
packets sent to the channel by the sender, and the receiver
leaves the channel to stop receiving data packets from the
channel.

Figure 1 shows how a file is splitted into FLUTE packets.
Assume that the user wants to send a file, which is the transport
object for the FLUTE protocol. Based on the transport object
length, the Encoding Symbol Length and the Maximum Source
Block Length a FLUTE sender calculates the source block
structure, i.e. the number of source blocks and their lengths.
A Maximum Source Block Length is a maximum length of a
source block that FLUTE’s algorithm for calculating the length
of the source blocks gives for a source block. This algorithm
generates at most two different lengths for the source blocks,

and the lengths are as close to each other as possible. The user
of the FLUTE sender configures both the Encoding Symbol
Length and the Maximum Source Block Length.

Each source block is then fragmented into source symbols
according to the Encoding Symbol Length. If FEC is used,
then parity symbol(s) are calculated based on the source sym-
bols. Source symbols and parity symbols together comprise
encoding symbols for the FLUTE protocol. Then a FLUTE
packet is constructed from a FLUTE header and an encoding
symbol. Finally the FLUTE packet is ready for UDP/IP
delivery.

The sender communicates the transport object length, the
Encoding Symbol Length and the Maximum Source Block
Length to the receiver(s) either in the FLUTE header or using
a special transport object, named File Delivery Table (FDT).
Thus the FLUTE receiver(s) are able to calculate the source
block structure in advance of receiving a file.

Fig. 1. Building up a FLUTE packet

The use of CC and FEC building blocks with FLUTE
is optional. By default no CC is used and the FEC code
is Compact No-Code FEC [4], which means that there is
no actual FEC encoding or decoding, and encoding symbols
contain only the source symbols. But when using for example
Reed-Solomon FEC, encoding symbols contain also parity
symbols. Reed-Solomon is a typical block(n, k) FEC code,
where k is the number of source symbols per block andn
is the number of encoding symbols per block. To be able to
decode a source block, the decoder needs to havek encoding
symbols for the block; so all encoding symbols are equal.

As mentioned earlier, a FLUTE sender calculates the source
block structure, i.e. the number of source blocks and their
lengths. The Source Block Length is the length in units of
source symbols of the source block, i.e. it is also the value
of k for FEC codes. The value ofn is computed for example
using ”n-algorithm” specified in [5].



2

II. T EST SETUP

Simulations defined in this paper were done by using MAD-
FLUTE [7] (version 1.0), which is one of the publicly available
implementations of the FLUTE protocol. MAD-FLUTE is
available for both Windows and Linux. It is IPv4 and IPv6
capable and it supports both unicast and multicast UDP deliv-
ery. The simulations were done in Linux (kernel version 2.6.5)
using IPv4 and one ALC/LCT channel (multicast group).

In the simulations the FLUTE sender transmitted data, i.e.
File Delivery Table and one file, in a carousel (encoding
symbols were sent sequentially). Two types of carousels were
used, data carousel and FEC data carousel. Data carousel
used FLUTE with Compact No-Code FEC, and FEC data
carousel used FLUTE with Reed-Solomon FEC, based on
Vandermonde matrices [6].

The size of the file was 5488640B (mp3 file). If not
otherwise mentioned, the used Encoding Symbol Length was
1428B with Compact No-Code FEC and 1424B with Reed-
Solomon FEC, so the file consists of 3844 and 3855 source
symbols respectively. The used Encoding Symbol Length was
maximum length for the encoding symbol so that the IP
packet length did not exceed the Ethernet link’s Maximum
Transmission Unit (MTU) 1500B. FLUTE header is four bytes
longer with Reed-Solomon FEC compared to Compact No-
Code FEC.

The intention was to study how FLUTE manages to recover
from packet losses. In this paper we define the performance
of the FLUTE as the number of loops the FLUTE sender has
to transmit so that the FLUTE receiver gets the whole file. We
assume that a single receiver can represent the behaviour ofall
receivers, which is naturally not the case with the Internet. But
the assumption is much closer to true in environments, where
there is only one hop between the sender and the receivers,
which is the case for example in DVB-H.

Both the FLUTE sender and the FLUTE receiver were
running on the same machine to avoid uncontrolled packet
loss in the network. Instead, uniformly distributed packetloss
was generated using a probabilityp to drop a packet. Ifp
is quite small (under 0,1) an average packet loss burst size
is close to one. In real network, error bursts (i.e. a group of
packet losses) occur, and for this purpose error bursts were
generated by using two probabilities,p1 and p2, for packet
losses.p1 was used to make a packet loss andp2 to make a
packet loss after a packet loss, andp2 was naturally higher
thanp1.

The average packet loss with error bursts can be calculated
by using two state Markov chain, where state one is state when
earlier packet was not lost and state two is state when earlier
packet was lost. EquationsP1p12 = P2p21 (balance equation)
andP1 + P2 = 1 with following transition probabilities:

(

p11 p12

p21 p22

)

=

(

1 − p1 p1

1 − p2 p2

)

gives the probabilitiesP1 and P2 to find the system in state
one and in state two respectively. Then the average packet loss
is P1p12+P2p22, and the average error burst size is1/(1−p2).
For examplep1 = 0, 01 and p2 = 0, 80, and alsop1 = 0, 02

andp2 = 0, 60, will generate 4,76% average packet loss with
average error burst size 5 and 2,5 packets respectively.

III. D ATA CAROUSEL VERSUSFEC DATA CAROUSEL

Because FLUTE uses unreliable transport protocol, packet
losses must be handled at higher layers. Use of data carouselis
one option for this purpose, i.e. missing packets are tried to be
caught in the next loop(s). Better results are received by using
FEC data carousel, which includes parity data to recover from
packet losses, but depending on the amount of parity data and
missing packets next loop(s) might still be needed.

In all data carousel simulations we studied how many loops
were needed to receive the whole file with different amount
of FEC data. We also did some mathematical analysis of data
carousel.

Table I describes symbols, which are used further in other
tables.

TABLE I

DEFINITION OF SYMBOLS

Loss [%] Average packet loss percentage
Avg Average number of loops needed to receive the whole file
Min Minimum number of loops needed to receive the whole file
Max Maximum number of loops needed to receive the whole file
Exp Number of experiments

l Encoding Symbol Length
L Maximum Source Block Length

RS [%] Amount of the parity data (FEC) compared to the source data,
for example 100% means that there is equal amount of source
data and parity data

A. Simulation of Data Carousel under Uniformly Distributed
Errors

In this test Compact No-Code FEC (also called Null FEC)
was used with different average packet loss percentages. The
sender generated artificial packet loss, which did not contain
error bursts. With Compact No-Code FEC the Source Block
Length does not affect to the performance or to the encoding
and decoding times, because there is no actual FEC encoding
and decoding. The used Maximum Source Block Length was
10.

The number of loops needed to receive the whole file with
data carousel under uniformly distributed errors is shown in
Table II. It should be noted that the size of the file (the number
of packets forming the file) affects to these values.

TABLE II

DATA CAROUSEL UNDER UNIFORMLY DISTRIBUTED ERRORS

Loss [%] Avg Min Max Exp
50 13,33 10 22 1000
25 6,89 5 12 1000
10 4,34 3 7 1000
5 3,40 3 5 1000
1 2,33 2 4 1000

0,1 1,99 1 3 1000

From Table II we can notice that performance gets quite
poor already with low average packet loss. For example with
10% average packet loss it can take seven loops to receive the
whole file.



3

B. Mathematical Analysis of Data Carousel under Uniformly
Distributed Errors

In this test we analysed the data carousel mathematically
under uniformly distributed errors. We tried to mathematically
solve out how many loops are averagely needed to receive the
whole file with different packet loss ratios. The analysis was
done with the help of Mathematica.

Equation 1 gives the probability to receivex new packets
for each loop, wheres is the number of sent packets per loop
(constant),l is the number of lost packets per loop (constant),
and m is the number of missing packets at the beginning of
the loop.

P (x,m) =

(

m
x

)(

s−m
s−l−x

)

(

s
s−l

) (1)

For the expectation value of the number of new packets,
which are received at loop no.i we have

x(i) =
m

∑

ξ=0

ξP (ξ,m) (2)

The following algorithm utilises Equations 1 and 2 to give
the number of loops averagely needed to receive the whole
file. To handle the last missing packet in a realistic way, a
Monte Carlo simulation part is added to the algorithm.
i = 2, m = l
while (1) {

if (m == 1) {
if (l/s < random(0,100)/100) {
result = i, break

}
else {i++, continue}

}
m -= round(x(i))
if (m > 0) {i++}
else {result = i, break}

}

The algorithm was run a thousand times for each packet
loss ratio, so that the effect of the random function in the
algorithm was taken into account. Table III shows the number
of loops averagely needed to receive the whole file. In the table
”Math” means the mathematical analysis and ”Simul” means
the simulation done in Section III-A. The algorithm gives quite
similar results, for different packet loss ratios, than achieved
in the simulation, so it could be used for other packet loss
ratios too.

TABLE III

MATHEMATICAL ANALYSIS COMPARED TO SIMULATION OF DATA

CAROUSEL UNDER UNIFORMLY DISTRIBUTED ERRORS

Loss [%] Math Simul
50 12,94 13,33
25 7,32 6,89
10 4,00 4,34
5 3,00 3,40
1 2,00 2,33

0,1 2,00 1,99

C. Simulation of FEC Data Carousel under Uniformly Dis-
tributed Errors

In this test Reed-Solomon FEC was used with different
average packet loss percentages. The sender generated artificial

packet loss, which did not contain error bursts. With different
average packet loss percentages the amount of FEC data was
increased step by step (5, 10, 25, 50, 100, 150 and 200
percents) until the whole file was received always at the first
loop. The Maximum Source Block Length was set to 85 so
that it was possible to generate 200% FEC data, because FEC
encoder’s and decoder’s maximum value forn (the number of
encoding symbols per block) was 255.

Table IV shows the number of loops needed to receive the
whole file with different average packet loss and FEC data
percentages. The effect of adding even a small amount of
FEC data into the carousel is remarkable. When considering
the performance of the FEC data carousel, it should be noted
that the overhead data in one loop increases when the amount
of FEC data increases, so the total amount of data averagely
needed to transmit describes better the performance of the FEC
data carousel.

For example, adding of 10% Reed-Solomon FEC data with
10% average packet loss, more than halved (4,34→ 2) the
average number of loops needed to receive the whole file
compared to Compact No-Code FEC, but the average amount
of transmitted data (Avg Data = (1 + RS[%]/100) ∗ Avg)
does not halve (2,20 with 10% Reed-Solomon FEC data and
4,34 with Compact No-Code FEC).

TABLE IV

FEC DATA CAROUSEL UNDER UNIFORMLY DISTRIBUTED ERRORS

Loss [%] RS [%] Avg Min Max Avg Data Exp
0,1 5 1,00 1 1 1,05 1000
1 5 1,09 1 2 1,14 1000
1 10 1,00 1 1 1,10 1000
5 5 2,00 2 3 2,10 1000
5 10 1,87 1 2 2,06 1000
5 25 1,00 1 1 1,25 1000
10 5 2,09 2 3 2,19 1000
10 10 2,00 2 2 2,20 1000
10 25 1,03 1 2 1,29 1000
10 50 1,00 1 1 1,50 1000
25 5 3,44 3 4 3,61 1000
25 10 3,00 2 4 3,30 1000
25 25 2,00 2 2 2,50 1000
25 50 1,49 1 2 2,24 1000
25 100 1,00 1 1 2,00 1000
50 5 6,45 5 9 6,77 1000
50 10 5,10 4 7 5,61 1000
50 25 3,35 3 4 4,19 1000
50 50 2,48 2 3 3,72 1000
50 100 2,00 2 2 4,00 1000
50 150 1,08 1 2 2,70 1000
50 200 1,00 1 1 3,00 1000

D. Simulation of Data Carousel with Error Bursts

The reason for this test was to study how error bursts affect
to the performance of data carousel, and also to figure out the
effect of the use of different Encoding Symbol Lengths. In this
test Compact No-Code FEC was used. The sender generated
artificial packet loss, which contained error bursts. Packet loss
probabilitiesp1 and p2 (see Section II) were 1% and 80%
respectively. With these values an average packet loss is 4,76%
(an average error burst size is 5 packets), so we can compare
this test to uniformly distributed errors case with 5% average
packet loss. The used Maximum Source Block Length was 10.

The number of loops needed to receive the whole file is
shown in Table V. First we can notice that all values are better



4

or equal compared to uniformly distributed errors case with
Encoding Symbol Length 1428B (Avg = 3,4, Min = 3, Max
= 5 in Table II). This might be due to the fact that with error
bursts the likelihood to loose the same packet at the next loop
is smaller, because only the place of the first packet of the
error burst is random and the other packet losses come after
that packet. With uniformly distributed errors, packet losses are
distributed more smoothly. Another observation is that when
decreasing the Encoding Symbol Length the performance also
gets worse, as expected.

TABLE V

DATA CAROUSEL WITH ERROR BURSTS

l Avg Min Max Exp
1428 3,17 2 5 1000
714 3,35 2 6 1000
357 3,62 3 6 1000

E. Simulation of FEC Data Carousel with Error Bursts

The reason for this test was to study how error bursts
affect to the performance of FEC data carousel. The focus
was mainly to figure out how different Source Block Lengths
give different protections against error bursts. In this test Reed-
Solomon FEC was used. The amount of the FEC data was 10%
and the sender generated artificial packet loss, which contained
error bursts.

In the first test case, packet loss probabilitiesp1 and p2

were 1% and 80% respectively, and in the second test casep1

and p2 were 2% and 60% respectively. With these values an
average packet loss is 4,76% (an average error burst size is
5 packets in the first test case and 2,5 packets in the second
test case), so we can compare these test cases to uniformly
distributed errors case with 5% average packet loss.

The number of loops needed to receive the whole file is
shown in Table VI. First we can notice that all values in both
test cases are worse or equal compared to uniformly distributed
errors case with Maximum Source Block Length 85 (Avg =
1,87, Min = 1, Max = 2 in Table IV). But by increasing the
Maximum Source Block Length it is possible to get better
protection against error bursts. With the second test case we
can notice that when the error burst size is small even Source
Block Length 85 has quite good performance.

TABLE VI

FEC DATA CAROUSEL WITH ERROR BURSTS

Avg Burst L Avg Min Max Exp
5 85 2,12 2 4 1000
5 170 1,99 1 3 1000
5 230 1,92 1 3 1000

2,5 85 2,00 1 3 1000
2,5 170 1,90 1 2 1000
2,5 230 1,68 1 2 1000

Theoretically if the studied average size error burst happens
once for a block, all used Maximum Source Block Lengths
should have enough protection against it. With Maximum
Source Block Length 85 (with 10% Reed-Solomon FEC data)
there are eight redundant symbols per source block, so a
maximum acceptable error burst size per source block is thus

eight. With Maximum Source Block Length 170 and 230
there are 16 and 22 redundant symbols respectively, so the
maximum acceptable error burst sizes are also higher.

According to our results there must have been several error
bursts within one block, or the error burst has been longer than
the maximum acceptable error burst size, because the whole
file was not always received at the first loop.

IV. CONCLUSIONS

FLUTE has good performance when some amount of parity
data is added into the data carousel to minimize the number
of loops that are needed to successfully receive the file(s).
For example, simulations showed that it is possible to protect
against 1% average packet loss by adding 10% Reed-Solomon
parity data. Two to four loops are needed to recover missing
packets in the same case without the parity data. With higher
packet loss ratios it is even more beneficial to use parity data. It
should be also noted that other FEC techniques might perform
even better compared to Reed-Solomon.

The used Encoding Symbol Length should be the maximum
length for the encoding symbol carried in the FLUTE packet,
so that IP packet length do not exceed link’s MTU. Also large
Source Block Length gives better protection against packet
loss, when FEC is used, but with cost of increased encoding
and decoding times.

Because FLUTE uses unidirectional transport the FLUTE
sender does not know anything about the receiving status of
the FLUTE receiver(s). The results presented in this paper
gives some hints how to use the FLUTE sender so that the
FLUTE receiver(s) gets the file(s) with optimal amount of data
transmitted in a network.

Another option to the carousel (with or without parity data)
type of packet loss recovery is to use some kind of point-
to-point or point-to-multipoint file repair technique, which is
utilized when packets are still missing after the FLUTE sender
has stopped sending the file. If some file repair technique
is supported, the FLUTE sender could carousel the file for
example the average number of loops presented in this paper.
In other cases it might be best to use the worst case values to
enable reliable delivery.

REFERENCES

[1] Paila, T., Luby, M., Lehtonen, R., Roca, V. and R. Walsh: FLUTE - File
Delivery over Unidirectional Transport. RFC 3926, October2004

[2] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L. and J. Crowcroft:
Asynchronous Layered Coding (ALC) Protocol Instantiation. RFC 3450,
December 2002

[3] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., Handley, M.and J.
Crowcroft: Layered Coding Transport (LCT) Building Block.RFC 3451,
December 2002

[4] Luby, M. and L. Vicisano: Compact Forward Error Correction (FEC)
Schemes. RFC 3695, February 2004

[5] Peltotalo, J., Peltotalo, S. and V. Roca: Simple XOR, Reed-Solomon, and
Parity Check Matrix-based FEC Schemes. IETF, draft-peltotalo-rmt-bb-
fec-supp-xor-pcm-rs-00.txt, June 2004

[6] Rizzo, L.: Effective Erasure Codes for Reliable ComputerCommuni-
cation Protocols. ACM SIGCOMM Computer Communication Review
Vol.27, No.2, pp.24-36, April 1997

[7] MAD/TUT project’s home page, April 2005
http://www.atm.tut.fi/mad


